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Velocity distribution for strings in phase-ordering kinetics

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 25 August 1998!

The continuity equations expressing conservation of string defect charge can be used to find an explicit
expression for the string velocity field in terms of the order parameter in the case of anO(n) symmetric
time-dependent Ginzburg-Landau model. This expression for the velocity is used to find the string velocity
probability distribution in the case of phase-ordering kinetics for a nonconserved order parameter. For long
timest after the quench, velocities scale ast21/2. There is a large velocity tail in the distribution corresponding
to annihilation of defects which goes asV2(2d122n) for both point and string defects ind spatial dimensions.
@S1063-651X~99!13002-2#

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.75.1g, 98.80.Cq
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I. INTRODUCTION

In recent work@1# we discussed how one could use co
servation of topological charge to study the statistics of
locities of point defects in phase-ordering systems. We w
able to identify the appropriate point-defect velocity field
terms of the order-parameter field in the context of
d-dimensionalO(n) symmetric time-dependent Ginzburg
Landau~TDGL! model. Using this expression for the velo
ity field, for point particles (n5d), the probability distribu-
tion for defect velocities was determined in the case of
late-state phase ordering using the lowest-order approx
tion in the perturbation expansion method developed in R
@2#. This analysis is extended here to the case of string
fects wheren5d21. The velocity probability distribution is
worked out explicitly forn5d2151 and 2 and for the wal
casen5d2251. These results and the results for alln5d
can all be written in the form

P@V#5S 1

p v̄2D d/2 GS d

2DGS d

2
11D

GS n

2DGS ~d2n!

2
11D

3S v̄
V
D d2n

~11V2/ v̄2!2~d12!/2, ~1!

where the velocities scale with a factorv̄'L(t)21, where
L(t)'t1/2 is the characteristic scaling length which grow
with time t after the quench. The result forP@V# indicates
that the probability of finding a defect with a large veloci
decreases with time. There is a high-velocity tailV2(2d122n)

which corresponds to the annihilation of defects and de
loops.

Bray @3# has used scaling arguments to obtain estima
for the exponents governing the large velocity tails in t
problem. From his Eqs.~20! and ~21! for the case of a non
conserved order parameter (z52 in his notation!, one is led
to the result, in our notation,P@V#'1/Vp1d21, where p
521d112n. The termd21 added top in the exponent
comes about because Bray uses the normaliza
*0

`dVPBray@V#51, while we use here*ddVP@V#51. Thus
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we find the encouraging result that Bray obtains the same
exponent 2d122n as obtained here. A difference is that h
finds these results for alln<d. Our results are restricted t
the set described above.

The result obtained here forP@V# seems very simple
Does it correspond to experimental observation or the res
of numerical simulations? Thus far there have been no di
tests. It would seem worthwhile to check the range of val
ity of the defect velocity probability distribution given b
Eq. ~1!.

II. PROBLEM SETUP

We study ann-component nonconserved order-parame
field ca(R,t) in d-spatial dimensions which satisfies th
TDGL equation

] tca~R,t !52G
dF@cW #

dca~R,t !
1ha~R,t !, ~2!

where F is an effective free-energy functional andG is a
constant kinetic coefficient. We assumeF is of the O(n)
symmetric square-gradient form

F5E ddRF c

2
~¹cW !21V~cW !G , ~3!

wherec.0 andV(cW ) is chosen to be a degenerate doub
well or wine-bottle potential. This model is to be suppl
mented by random, uncorrelated, initial conditions. We
sume that there is a rapid temperature quench from a h
temperature to zero temperature where the noiseha in Eq.
~2! can be set to zero. In the scalar case (n51) such systems
order through the growth of domains separated by sh
walls. As time evolves these domains coarsen and o
grows to progressively longer length scales. In the case
systems with continuous symmetry (n.1) the disordering
elements@4,5# will depend onn and spatial dimensionalityd.
Thus, for example, forn5d one has point defects~vortices
or monopoles! while for n5d21 one has vortex lines o
stringlike objects. Forn.d there are no stable singular to
pological objects.
1574 ©1999 The American Physical Society
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The main physics in phase-ordering systems@6–8# is the
interplay between two characteristic lengths, a character
domain sizeL(t), which grows with time, and a defect d
mensionj ~interfacial width, vortex core size, etc.!. How-
ever, at long enough times the single lengthL(t) dominates,
L(t)@j, the morphological structure looks self-similar u
der the rescaling of space and time, and the order-param
correlation function satisfies the scaling equation

Cc~R,t ![^cW ~R,t !•cW ~0,t !&5c0
2F~x!, ~4!

wherex[R/L(t) and c0 is the magnitude ofcW in the or-
dered state. The structure factor, the Fourier transform
Cc(R,t), satisfiesC̃c(q,t)5Ldc0

2F̃(Q), whereQ[qL is a
scaled wave number. For pure systems with short-range
teractions and a nonconserved order parameter the gr
law is given by the Lifshitz-Cahn-Allen resultL't1/2 for all
n. The two-dimensionalXY model @9–13# and the one-
dimensional scalar model@14,15# appear to be interestin
exceptions. For largeQ andn<d, due to defects, the struc
ture factor obeys the generalized Porod’s law@16–20#,
F̃(Q);Q2(n1d). This reflects increasingly weaker singula
ties in F(x) for small x as a function ofn. In the opposite
limit, it appears that the largex behavior can, with prope
definition ofx, be put in the formF(x)'x2ne2(1/2)x2

, where
n is a subdominant index@2#. The quantities discussed abov
are evaluated at equal times after the quench. In the two-
case one again has a scaling law@21–23# and the on-site
correlation function has the form

^cW ~R,t1t !•cW ~R,t !&'L~t!2l ~5!

for t@t, wherel is a nontrivial exponent which has bee
determined numerically and theoretically@2# for a number of
systems.

III. DEFECT DYNAMICS FOR POINT PARTICLES

Since a great deal is known about order-parameter co
lations in phase-ordering systems, attention has turned
ward the study@24,25# of the statistics and dynamics of th
annihilating defects themselves. The basic idea is that
positions of defects are located by the zeros of the ord
parameter fieldcW , therefore the charged or signed density
point defects is given by

r~R,t !5d„cW ~R,t !…D~R,t !, ~6!

whereD, associated with the change of variables from
set of vortex positions to the fieldcW , is defined by

D5
1

n!
em1m2•••mn

en1n2•••nn
¹m1

cn1
¹m2

cn2
•••¹mn

cnn
,

~7!

where em1m2•••mn
is the n-dimensional fully antisymmetric

tensor and summation over repeated indices is implied h
and below. The unsigned defect density,n(R,t), is given by

n~R,t !5d„cW ~R,t !…uD~R,t !u. ~8!
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It was shown in Ref.@1# that the vortex charge densityr for
point defects, defined by Eq.~6!, satisfies a continuity equa
tion of the form

ṙ52¹m1
@rvm1

#, ~9!

where the defect velocity fieldvm1
is given by

Dvm1
52

1

~n21!!
em1m2•••mn

en1n2•••nn

3ċn1
¹m2

cn2
•••¹mn

cnn
, ~10!

whereD is defined by Eq.~7!. Thus one has an explici
expression for the defect velocity field which can be e
pressed strictly in terms of the order parameter and its sp
derivatives. Remember that the TDGL equation of moti
can be used to expressċn1

in terms ofc and it spatial de-
rivatives.

The expression given by Eq.~10! for the velocity is very
useful because it avoids the problem of having to specify
positions of the defects explicitly. The positions are impl
itly determined by the zeros of the order-parameter field. T
practical usefulness of Eq.~10! can be seen by asking th
following question: In the scaling regime of a phase-order
system with point defects, what is the probability of finding
defect with a velocityV? This probability distribution func-
tion is defined by

^n&P@V#[^nd„V2v~cW !…&, ~11!

whereV is a reference velocity andn is the unsigned defec
density defined by Eq.~8!. The calculatedP@V# is given by
Eq. ~1! with n5d.

Going further along these lines@26# we considered the
two-vortex velocity probability distribution,P@V1 ,V2 ,R#,
which gives one the probability of finding the velocity of on
defect in the fixed presence of another defect a known
tance away with a known velocity. ClearlyP@V1 ,V2 ,R#
contains a tremendous amount of information about the
namics of point defects. The physical results from the cal
lation of this quantity, carried out in detail forn5d52 in
Ref. @26#, are relatively simple to state. The probability di
tribution is a function only of the scaled velocitiesuW i

5VW i / v̄ for i 51 or 2, and the scaled separationxW5RW /L(t).
The characteristic velocityv̄ is the same quantity that ap
pears inP@V#. For a given scaled separationx, the most
probable configuration corresponds, as expected, to a
with zero total velocity and a nonzero relative velocity on
along the axis connecting the vortices:V152V2[v x̂.
Moreover, there is a definite most probable nonzero value
v5vmax for a given value ofx. The most striking feature o
these results is that for smallx the most probable velocity
goes asvmax5k/R, whereR is the unscaled separation b
tween the vortices andk52.19 in dimensionless units de
fined in Ref.@26#. The result givingvmax inversely propor-
tional to R is consistent with overdamped dynamics whe
the relative velocity of the two vortices is proportional to th
force which in turn is the derivative of a potential which
logarithmic in the separation distance. Since there is l
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probability @24,27# of finding like-signed vortices at shor
distances, our results giving the velocity as a function
separation distance should be interpreted in terms of ann
lating vortex-antivortex pairs and is in agreement with t
general scaling ideas proposed by Bray@3#.

IV. CONTINUITY EQUATIONS

Let us investigate the existence of a local statemen
topological charge in the general case ofn<d. The first step
is to introduce the appropriate density for topological char
In the case of point particles the conserved density is
charge density given by Eq.~6!. The next obvious extensio
@28# is to string defects wheren5d21 and the defect line
density is given by

rs1
5d~cW !Ds1

, ~12!

where

Ds1
5

1

n!
es1m1m2•••mn

en1n2•••nn
¹m1

cn1
¹m2

cn2
•••¹mn

cnn

~13!

and thes andm range from 1 tod and then range from 1 to
n and there is summation over repeated indices. The ge
alization of Eqs.~9! and ~12! to all n<d is given by

rs1s2•••sd2n
5d~cW !Ds1s2•••sd2n

, ~14!

where

Ds1s2•••sd2n
5

1

n!
es1s2•••sd2nm1m2•••mn

en1n2•••nn

3¹m1
cn1

¹m2
cn2

•••¹mn
cnn

. ~15!

It is then straightforward to show thatDs1s2•••sd2n
itself sat-

isfies a continuity equation given by

Ḋs1s2•••sd2n
5¹m1

Js1s2•••sd2nm1
~16!

with the current defined by

Js1s2•••sd2nm1
5es1s2•••sd2nm1m2•••mn

gm2m3•••mn
~17!

and

gm2m3•••mn
5

1

~n21!!
en1n2•••nn

ċn1
¹m2

cn2
•••¹mn

cnn
.

~18!

To obtain the continuity equation forrs1s2•••sd2n
, we need a

second identity. Consider the quantity

Js1s2•••sd2nm1
¹m1

cn

5es1s2•••sd2nm1m2•••mn
gm2m3•••mn

¹m1
cn

5es1s2•••sd2nm1m2•••mn
en1n2•••nn

¹m1
cn

3¹m2
cn2

•••¹mn
cnn

. ~19!
f
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The key observation is that the right-hand side of Eq.~19!
has a factor which can be written in the form

es1s2•••sd2nm1m2•••mn
¹m1

cn¹m2
cn2

•••¹mn
cnn

5enn2•••nn
Qs1s2•••sd2n

, ~20!

whereQs1s2•••sd2n
is determined by multiplying Eq.~20! by

enn2•••nn
and summing over all then ’s. We easily obtain,

remembering Eq.~15!, n! Qs1s2•••sd2n
5n! Ds1s2•••sd2n

. Put-
ting this result back into Eq.~19! gives

Js1s2•••sd2nm1
¹m1

cn

5
1

~n21!!
ċn1

en1n2•••nn
enn2•••nn

Ds1s2•••sd2n

5
1

~n21!!
ċn1

dn1 ,n~n21!!Ds1s2•••sd2n

5ċnDs1s2•••sd2n
. ~21!

Taking the time derivative ofrs1s2•••sd2n
gives, using Eqs.

~10! and ~21!,

ṙs1s2•••sd2n
5

]d~cW !

]cn
ċnDs1s2•••sd2n

1d~cW !Ḋs1s2•••sd2n

5
]d~cW !

]cn
Js1s2•••sd2nm1

¹m1
cn

1d~cW !¹m1
Js1s2•••sd2nm1

and finally we obtain the desired continuity equation

ṙs1s2•••sd2n
5¹m1

~d~cW !Js1s2•••sd2nm1
!. ~22!

For the simplest case of point defects (n5d), Eq. ~22! can
be put into the conventional form given by Eq.~9! with

Jm1
52vm1

D ~23!

and the velocity given by Eq.~10!.
Let us turn next to the case of strings where the l

density is a vectorrm1
and the current is a two-compone

tensor,Js1m1
5es1m1m2•••mn

gm2m3•••mn
. Clearly Js1m1

is anti-
symmetric in its subscripts. Since we expect the instan
neous velocity to be orthogonal to the local orientation of
string, we can define the velocity via

Jab5vaDb2vbDa . ~24!

Dotting the vectorDW into this expression gives the result

va5
1

DW 2
JabDb , ~25!

where we have taken advantage of the fact thatvW andDW are
orthogonal:DW •vW 5Da(1/DW 2)JabDb50. The velocity field
for strings can be written in the form
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vs1
5

1

DW 2
Dm1

es1m1m2•••mn
gm2m3•••mn

~26!

for generaln.
Let us check this result and its sign for the simplest c

of n51, d52. The vectorDW in this case takes the simpl
form Dm1

5em1m2
¹m2

c, g5ċ, and

vs1
5

1

~¹c!2
em1m2

¹m2
ces1m1

ċ52
¹m1

c

~¹c!2
ċ. ~27!

Consider a circular loop of string of radiusR(t) where the
order parameter near the interface formed by the loop
given in polar coordinates in the form

c~rW !5A@r 2R~ t !#, ~28!

whereA is an overall constant amplitude. We then need
derivatives¹m1

c5Ar̂m1
and ċ52Ṙ(t)A to obtain the ve-

locity

vs1
5

1

A2
Ṙ~ t ! r̂ s1

A25Ṙ~ t ! r̂ s1
~29!

as expected. Typically we will substitute forċ using the
equation of motion and use the defect locatingd function to
set

ċ5Gc¹2c ~30!

and

vs1
52

~¹s1
c!

~¹c!2
Gc¹2c. ~31!

Using the same ansatz given by Eq.~28! and remembering
that the expression for the velocity is multiplied by ad func-
tion settingr 5R(t) leads to the result¹2c5A/r 5A/R(t),
and we obtain the Lifshitz-Cahn-Allen@6–8# result,

vs1
52Gc

1

R~ t !
r̂ s1

, ~32!

which tells us that the circular domain is shrinking a
R(t)'t1/2.

For n52 andd53 we have explicitly the results reporte
in Ref. @28#:

DW 5
1

2
en1n2

~¹W cn1
3¹W cn2

!, ~33!

gW 5en1n2
ċn1

¹W cn2
, ~34!

and

vW 5
1

DW 2
DW 3gW . ~35!
e

is

e

V. BRIEF DISCUSSION OF WALLS

Let us briefly discuss how things develop as one attem
to go further and increased2n to 2 and the case of walls
We must in this case deal with the quantities

Ds1s2
5

1

n!
es1s2m1m2•••mn

en1n2•••nn
¹m1

cn1
¹m2

cn2
•••¹mn

cnn

~36!

and

Js1s2m1
5es1s2m1m2•••mn

gm2m3•••mn
. ~37!

If we recall the definitions of the velocity field for poin
defects given by Eq.~23!, and for string defects given by Eq
~24!, then it is natural to write for walls

Js1s2m1
52Ds1s2

vm1
2Dm1s1

vs2
2Ds2m1

vs1
. ~38!

This expression builds in the antisymmetry ofJs1s2m1
.

If one restricts the discussion to the physically most r
evant case ofn51, d53, then one can use the resultDs1s2

5es1s2m3
¹m3

c to show that the velocity field is given by

vm1
52

1

D 2
Ds1s2

es1s2m3
¹m1

ċ, ~39!

where D 25(¹W c)2. Further straightforward manipulatio
leads to the final result

vm52
¹mc

~¹W c!2
ċ. ~40!

The key result here is thatvW is orthogonal toDs1 ,s2
:

vm1
Dm1 ,s3

5
ċ

~¹W c!2
¹m1

cem1 ,s3 ,m3
¹m3

c50. ~41!

It remains to be seen if Eq.~38! serves as a useful definitio
of the velocity field for walls withn.1. Notice that the
results for a scalar order parameter (n51) can all be written
in the form of Eq.~40! for d51, 2, and 3.

VI. EVALUATION OF P†V‡ FOR STRINGS

Our interest here is in determining the defect veloc
probability distribution,P@V#, for strings. Again we use the
auxiliary field method@29–33# which has been successful i
determining the scaling function for the order-parameter c
relation function in a perturbation theory expansion. W
evaluateP here to lowest order in this expansion where t
auxiliary field can be treated as a Gaussian field. The fi
step in this theory is to express the order parameter in te
of an auxiliary fieldmW . For our purposes here the importa
result is that near a charge one vortex core the order par
eter is linear in the auxiliary fieldcW (mW )5AmW 1O(m3). It is
then easy to show that one can replacecW by mW in the expres-
sion for vW given by Eq.~26! and in the expression for th
string-charge densityra(cW )5ra(mW ). We then want to de-
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termine the string-velocity probability distribution

^urW u&P@V#[^urW ~cW !ud„V2v~cW !…&5^urW ~mW !ud„V2v~mW !…&.
~42!

One can determineP@V# by first evaluating the more gener
probability distribution

G~j,bW !5^d~mW !d~jm
n 2¹mmn!d~bW 2¹2mW !& ~43!

since

n0P@V#5E dnb )
m51

d

)
n51

n

djm
n uDW ~j!ud„VW 2vW ~bW ,j!…G~j,bW !,

~44!

where

vm~bW ,j!5
Gc

DW 2

1

~n21!!
em1s1m2•••mn

3Ds1
~j!en1n2•••nn

bn1
jm2

n2
•••jmn

nn ~45!

with

Ds1
~j!5

1

n!
es1m1m2•••mn

en1n2•••nn
jm1

n1 jm2

n2
•••jmn

nn ~46!

and n05^urW (mW )u&. We have assumed that the quench is
zero temperature so that the noise can be set to zero an
can use Eq.~30!. The Gaussian average determiningG(j,bW )
is relatively straightforward to evaluate@34# and is given by

G~j,bW !5
1

~2pS0!n/2

e2~1/2S̄4!bW 2

~2pS̄4!n/2

1

~2pS̄2!nd/2

3expF2
1

2S̄2
(
m,n

~jm
n !2G , ~47!

whereS051/n^mW 2&'L2, S̄251/dn^(¹mW )2&'L0, and

S̄45
1

n
^~¹2mW !2&2

~dS̄2!2

S0
'L22. ~48!

The quantitiesS0 ,S̄2 ,S̄4 are determined from the theory fo
the order-parameter correlation function and discussed
ther below.

The problem then reduces to evaluating thebW andj inte-
grations in the integral given by Eq.~44! using the result for
G(j,bW ) given by Eq.~47!. We proceed by first doing the
integration overbW . This is facilitated by first defining the
matrix Mm

n via vm5GcMm
n bn and

Mm
n 5

1

~n21!!

1

DW 2~j!
ems1m2•••mn

Ds1
~j!enn2•••nn

jm2

n2
•••jmn

nn .

~49!

Clearly the quantityDW 2 is important in the development an
is discussed in Appendix A. The matrixMm

n is discussed in
o
we

r-

Appendix B. Then we use the integral representation for
d function and find that we can evaluate the integral ovebW
in terms of standard displaced Gaussian integrals with
results

n0P@V#5
1

~2pS0!n/2E )
m51

d

)
n51

n

djm
n uDW ~j!u

1

~2pS̄2!nd/2

3expF2
1

2S̄~2!(m,n
~jm

n !2GJ~j!, ~50!

where

J~j!5E ddk

~2p!d
eikW•VW Jk~j! ~51!

and

Jk~j!5E ddb

~2pS̄4!n/2
e2 ikW•vW ~bW ,j!e2~1/2S̄4!bW 2

5E dnb

~2pS̄4!n/2
e2 ikmGcMm

n bne2~1/2S̄4!bW 2

5expF2
1

2
S̄4~Gc!2kakbMa

n Mb
n G . ~52!

Sums overa andb range from 1 tod, those overn ’s from 1
to n. We then have the apparently Gaussian integral ovekW :

J~j!5E ddk

~2p!d
eikW•VW expF2

1

2
S̄4~Gc!2kakbM̄abG ,

~53!

whereM̄ab5Ma
n Mb

n is a symmetricd3d matrix. Since we

have the propertyDaMa
n 50, we see that the matrixM̄ab has

a zero eigenvalue corresponding to an eigenfunction in thDW
direction:DaM̄ab50. In order to carry out the integral in
Eq. ~53!, we must set up a coordinate system which sing
out theDW direction andn orthogonal directions. Thus we
construct an orthonormal set (D̂,ĵ (s)), for s51,2, . . . ,n,

which satisfyĵa
(s)D̂a50 andĵa

(s)ĵa
(s8)5dss8 . In Appendix C

we show that we can writeĵa
(s)5(nAsnjm

n and it can be
shown generally, see Appendix C, that

~det A!~detÃ!5
1

detN
5

1

DW 2
, ~54!

whereN is then3n matrix Nnn85jm
n jm

n8 . We then make the

change of variables in the integral Eq.~53! from kW to

ka5(
n1

n

tnĵa
~n!1tdD̂a ~55!

which clearly has a Jacobian of 1. The integral of interes
then given by
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J~j!5E ddt

~2p!d
eit dD̂•VW eit nĵa

~n!Va

3expF2
S̄4

2
~Gc!2tntn8Qnn8G , ~56!

wheren and n8 range from 1 ton. One can then do thetd
integration to obtain ad function. The rest of the integration
are over Gaussian fields governed by the matrixQnn8
5 ĵa

(n)ĵb
(n8)M̄ab which does not possess any zero eigenv

ues. Evaluating the standard Gaussian integral leads to
result

J~j!5d~D̂•VW !
1

@2pS̄4~Gc!2#n/2

1

~detQ!1/2

3expF2
1

2S̄4~Gc!2
VnVn8~Q21!nn8G , ~57!

where then vectorVn is defined by

Vn5 ĵa
~n!Va . ~58!

Note, if we insert Eq.~58! into Eq.~57!, we see that we nee
only the matrix

Rab5 ĵa
~n!ĵb

~n8!~Q21!nn8 ~59!

and

J~j!5
d~D̂•VW !

~Gc!n

1

~2pS̄4!n/2

1

~detQ!1/2

3expF2
1

2S̄4~Gc!2
VaVbRabG . ~60!

We show in Appendix D that the matrixR, defined by Eq.
~59!, can be put into the very simple formRab5ja

n jb
n , and

finally J(j) is given by

J~j!5
d~D̂•VW !

~Gc!n

1

~2pS̄4!n/2
uDW u

3expF2
1

2S̄4~Gc!2
VaVbja

n jb
n G . ~61!

Inserting this result into Eq.~50! gives

n0P@V#5
1

~2pS02pS̄4!n/2E )
m51

d

)
n51

n

3djm
nDW 2~j!

d~D̂•VW !

~Gc!n

1

~2pS̄2!nd/2
e2~1/2!A~j!,

~62!

where
l-
he

A~j!5
1

S̄2
(
n51

n

(
a51

d

~ja
n !21

1

S̄4~Gc!2 (
n51

n

(
a,b51

d

VaVbja
n jb

n .

~63!

If we make the rescalings

jm
n→AS̄2jm

n , ~64!

Va→ v̄Ṽa , ~65!

where the characteristic speed

v̄25~Gc!2
S̄4

S̄2

~66!

is introduced, thenDW→(S̄2)n/2DW and we obtain

n0P@V#5
1

~2p!n

1

~Gc!d
AS̄2

S̄4
S S̄2

2

S0S̄4
D n/2

I ~Ṽ!, ~67!

where the dimensionless integralI (Ṽ) is defined by

I ~Ṽ!5E )
m51

d

)
n51

n

djm
nDW 2~j!d„D̂~j!•ṼW …

e2~1/2!A0~j!

~2p!nd/2

~68!

with

A0~j!5 (
n51

n F (
a51

d

~ja
n !21 (

a,b51

d

ṼaṼbja
n jb

n G . ~69!

We can construct a form for the integralI (Ṽ) which does not
involve a unit vector in thed function via the following
rearrangements:

d~D̂•ṼW !5uDW ud~DW •ṼW !

5
DW 2

uDW u
d~DW •ṼW !5

DW 2

~detN!1/2
d~DW •ṼW !

5E dnz

~2p!n/2
DW 2d~DW •ṼW !e2~1/2!znNn,n8zn8. ~70!

Inserting this result into the integralI @Ṽ# gives

I ~Ṽ!5E )
m51

d

)
n51

n

djm
n E dnz

~2p!n/2

3DW 4~j!d„DW ~j!•ṼW …
e2~1/2!A0~j!

~2p!nd/2
, ~71!

where

A0~j,z!5~ja
n !21ṼaṼbja

n jb
n 1znja

n ja
n8zn8 . ~72!
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VII. CASE n51 AND d52

It is straightforward to work outP@V# and n0 for the
simplest case of defect lines in two dimensions. The k
simplifying aspect in this example is that the matrixja

n re-

duces to a vectorja andDs1
(j)5es1m1

jm1
, with DW 25jW2.

We have from Eq.~67! that

n0P@V#5
1

~2p!

1

~Gc!2
AS̄2

S̄4
S S̄2

2

S0S̄4
D 1/2

I ~Ṽ!, ~73!

I ~Ṽ!5E d2jE dz

~2p!1/2
jW4d„DW ~j!•ṼW …

1

~2p!
e2~1/2!A0~j!,

~74!

and

A0~j,z!5ja
21ṼaṼbjajb1z2ja

2 . ~75!

Then, since the integral is isotropic, we can pickV to be in

thex direction and useDW (j)•ṼW 5Vjy in thed function to do
the integral overjy and obtain

I ~Ṽ!5
1

~2pṼ!
E djxE dz

~2p!1/2
jx

4e2~1/2!jx
2[11z21Ṽ2] .

~76!

The remaining integrals are elementary and we obtain
results

I ~Ṽ!5
2

~pṼ!

1

~11Ṽ2!2
~77!

and

n0P@V#5
1

~2p!

1

Gc
AS̄2

S̄4
S S̄2

2

S0S̄4
D 1/2

2

~pṼ!

1

~11Ṽ2!2
.

~78!

We can then obtain the string densityn0 in two ways. We
can compute it directly from

n05^uDW ~cW !ud~cW !&5E )
n51

n

djm
n uDW ~j!uG~j!, ~79!

whereG(j) is the integral overbW of Eq. ~47! given by

G~j!5
1

~2pS0!n/2

1

~2pS̄2!nd/2
expF2

1

2S̄~2! (
m,n

~jm
n !2G .

~80!

Restricting the analysis ton51 andd52 gives

n05E d2j
1

A2pS0

1

2pS̄4

e2~1/2S̄2!jW2
. ~81!

These integrations are elementary with the final result
y

e

n05
1

2
S S̄2

S0
D 1/2

. ~82!

The second method for determiningn0 , which serves as a
check on intermediate steps in the calculation, is to integ
n0P@V# over all V and use the fact thatP@V# must be nor-
malized. The exercise is straightforward and leads to
same result forn0 . We then have the final result for th
probability distribution

P@V#5
2

p2

1

Vv̄

1

@11~V/ v̄ !2#2
~83!

and it is easy to see that this agrees with Eq.~1! for n51 and
d52.

VIII. CASE n52 AND d53

We turn to the physically important case of strings
three spatial dimensions. In working out this case, the
observation is that

Da~j!5 1
2 ea,m1 ,m2

en1 ,n2
jm1

n1 jm2

n2 ~84!

is a quadratic form inj. This suggests that we use the int
gral representation of thed function,

d„DW ~j!•ṼW …5E dk

2p
eikDW ~j!•ṼW , ~85!

to write the integral of interest, Eq.~71!, in the form

I ~Ṽ!5E )
m51

3

)
n51

2 djm
n

~2p!3E d2z

2p E dk

2p
DW 4~j!e2~1/2!jm

n Q
mm8
nn8

j
m8
n8

.

~86!

The matrix appearing in the Gaussian is given by

Qmm8
nn8 5dmm8dnn81dnn8ṼmṼm8

1dmm8znzn82 ikaea,m,m8en,n8 , ~87!

where we have introducedka5kṼa and have used the resu

2 1
2 jm

n ~2 ikaea,m,m8!jm8
n8 5 ikW•DW ~j!. ~88!

We see that in principle we can carry out thej integration
since it involves a product of polynomials times a Gauss
weight. Let us define the integral

L~kW ,z!5E )
m51

3

)
n51

2 djm
n

~2p!3
DW 4~j!e2~1/2!jm

n Q
mm8
nn8

j
m8
n8

~89!

and

I ~Ṽ!5E d2z

2p E dk

2p
L~kW ,z!. ~90!

A significant simplification occurs if we realize that grad
ents with respect tokW pull down factors ofDW and we can
write
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L~kW ,z!5¹k
4L0~kW ,z!, ~91!

where

L0~kW ,z!5E )
m51

3

)
n51

2 djm
n

~2p!3
e2~1/2!jm

n Q
mm8
nn8

j
m8
n8

. ~92!

Thus we are left with a set of Gaussian integrals.
The Gaussian integral can be carried out if we think

Qmm8
nn8 as a 636 symmetric matrix. If we can find the eigen

valuesl i , i 51,2, . . . ,6, ofthis matrix, then we have

L0~kW ,z!5
1

A)
i 51

6

l i

. ~93!

In Appendix E we discuss the relevant eigenvalue proble
The result of the analysis there is that the six-dimensio
problem factorizes into a product of two three-dimensio
problems. These three-dimensional eigenvalue problems
duce to cubic equations and the product of the three ass
ated eigenvalues can be read off from the associated ch
teristic equation with the final result

L0~kW ,z!5
1

A~11z2!~11z21Ṽ21k2!1~kW•ṼW !2

3
1

A~11z2!~11Ṽ2!1k21~kW•ṼW !2

. ~94!

We must then apply¹k
4 to L0(kW ,z) and setkW5kṼW . After a

great deal of algebra one finds a complicated result forI @Ṽ#

which still requires integration overk andzW. It turns out that
it is wise to first do thek integration. All of the contributions
are proportional to integrals of the form

E dk

2p

~kṼ!2p

~11z21Ṽ2k2!p13
5

kp

2pṼ

1

~11z2!5/2
, ~95!

where p takes the values 0, 1, and 2 withk053p/8,
k15p/16, k053p/8(16). The final integrals overzW can all
be expressed in terms of the integrals

Js1 ,s2
5E d2z

2p

1

~11z21Ṽ2!s1/2

1

~11z2!s2/2
, ~96!

which, for integers1 ands2 , can be worked out analytically
After an enormous amount of additional algebra we obt
the very simple result

I @Ṽ#5
3

Ṽ

1

~11Ṽ2!5/2
. ~97!

This leads back to the result
f

.
al
l

re-
ci-
ac-

n

n0P@V#5
1

~2p!2

1

~Gc!3
AS̄2

S̄4

S̄2
2

S0S̄4

3

Ṽ

1

~11Ṽ2!5/2
.

~98!

Integrating over allV we easily obtain the density of string

n05
1

p

S̄2

S0
. ~99!

Putting this result back into Eq.~98! gives the final result

P@V#5
3

4p

1

v̄3Ṽ

1

~11Ṽ2!5/2
, ~100!

which agrees with Eq.~1! for n52 andd53.

IX. WALLS IN THREE DIMENSIONS

Let us conclude with the example of walls in three dime
sions (n51,d53). We have from Sec. V thatD 25(¹W c)2

and the velocity of the wall is given by

vm52
¹mc

~¹W c!2
Gc¹2c. ~101!

Following the same path as for the point and string defe
we find that the velocity probability distribution is given b

n0P@V#5E dbd3jujW ud~VW 1GcjWb/j2!G~jW ,b!, ~102!

whereG(jW ,b) is given by Eq.~47! with n51 andd53 and

n0P@V#5E dbd3jujW ud~VW 1GcjWb/j2!

3
1

~2pS0!1/2

e2~1/2S̄4!bW 2

~2pS̄4!1/2

e2~1/2S̄2!jW2

~2pS̄2!d/2
. ~103!

Again inserting the integral representation for thed function
and doing theb integration, we obtain

n0P@V#5
1

A2pS0~2pS̄2!d
E d3jujW uexpF2

1

2S̄2

jW2GJ~j!,

~104!

where

J~j!5E d3k

~2p!3
eikW•VW expF2

1

2
S̄4~Gc!2~kW• ĵ !2/j2G .

~105!

The integral in Eq.~105! can be carried out if we introduc
the orthogonal set of coordinatesĵ, b̂(1), b̂(2) and we
chooseĵ5b̂(1)3b̂(2). Then we obtain
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J~j!5d~VW •b̂~1!!d~VW •b̂~2!!
ujW u

A2pS̄4~Gc!2

3expF2
1

2S̄4~Gc!2
~VW •jW !2G . ~106!

If we make the same change of variables given by Eqs.~64!
and ~65!, we find the result

n0P@V#5
1

v̄3

1

~2p!5/2
AS̄2

S̄4

I @Ṽ# ~107!

and

I @Ṽ#5E d3jjW2d~VW̃ •b̂~1!!d~VW̃ •b̂~2!!e2~1/2![ jW21~jW•VW̃ !2] .

~108!

If we now definebW (1)5b̂(2)3jW and bW (2)5jW3b̂(2), and as-
sume thatVW is in thez direction, we obtain

I @Ṽ#5E d3jjW4d~Ṽbz
~1!!d~Ṽbz

~2!!e2~1/2![ jW21jz
2Ṽ2] .

~109!

The key point then is that

d~Ṽbz
~1!!d~Ṽbz

~2!!5
1

Ṽ2
d~jx!d~jy! ~110!

and the integral reduces to an elementary one-dimensi
integral

I @Ṽ#5
1

Ṽ2E djzjz
4e2~1/2!jW2[11Ṽ2] . ~111!

Inserting the result of doing this integral back into Eq.~107!
leads immediately to the result thatP@V# is again given by
Eq. ~1!.

X. DETERMINATION OF v̄

The determination ofS0 , S̄2 , S̄4 , and v̄ requires a
theory for the auxiliary field correlation function

C0~12!5
1

n
^mW ~1!•mW ~2!&. ~112!

If we follow the development in Refs.@2# and @28# we can
write in the scaling regime,

C0~12!5S0e2rW2/~2L2!, ~113!

whererW5r 1
W2rW2 . We do not needS0 , S̄2 , andS̄4 individu-

ally. We only need the combination given by Eq.~66!. We
easily find

v̄25
2d

L2
~Gc!25

Gcd

2t
. ~114!
al

XI. CONCLUSIONS AND QUESTIONS

The results of this work are simply summarized by E
~1!. There remain several open questions. The most imp
tant question is whether Eq.~1! for P@V# corresponds to the
results found in the real world. It is highly desirable to me
sureP@V# for the rather broad range of systems covered
Eq. ~1!.

How is this result for the defect velocity probability dis
tribution changed at higher order in perturbation theory?
far, P@V# has only been calculated for the lowest order in t
perturbation theory developed in Ref.@2#. Scaling arguments
@3# would indicate that the large velocity tails will not b
modified at higher orders in perturbation theory. This qu
tion will be addressed soon.

The results forP@V# given by Eq.~1! have only been
proven for a subset of the rangen<d. What about forn
5d2252? This question is somewhat academic since i
outside the range of physically accessible spatial dimensi
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APPENDIX A: D¢ 2

Clearly one of the important quantities entering into t
discussion of the string velocity probability distribution
the quantityD defined by Eq.~13! and its square:

DW 25
1

~n! !2
emm1m2•••mn

en1n2•••nn
jm1

n1 jm2

n2
•••

3jmn

nn em,m
18m

28•••m
n8
en

18n
28•••n

n8
j

m
18

n18 j
m

28

n28
•••j

m
n8

nn8 . ~A1!

This quantity can be written in a simplified form if we realiz
that

emm1m2•••mn
emm

18m
28•••m

n8
5I @m1m2•••mn ;m18m28•••mn8#,

~A2!

whereI is a set of products ofd functions giving all matched
pairs between the unprimed and primed sets. There are
nus signs if the matched pairs are an odd number of per
tations of the labels in order to return to the order 1,2, . . . ,n.
We have then

DW 25
1

~n! !2
I @m1m2•••mn ;m18m28•••mn8#

3en1n2•••nn
en

18n
28•••n

n8
jm1

n1 jm2

n2
•••jmn

nn j
m

18

n18 j
m

28

n28
•••j

m
n8

nn8

5
1

n!
en1n2•••nn

en
18n

28•••n
n8
Nn1n

18
Nn2n

28
•••Nnnn

n8

5
1

n!
en1n2•••nn

en1n2•••nn
det~N!5det~N!. ~A3!
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APPENDIX B: MATRIX M µ
n

The matrixMm
n defined by Eq.~49! can be put into an-

other useful form by inserting the explicit form forDW given
by Eq. ~46! and using the result given by Eq.~A2!. An in-
termediate step gives

emm1m2•••mn
Dm1

5emm1m2•••mn

1

n!
em1m

18m
28•••m

n8
en

18n
28•••n

n8
j

m
18

n18 j
m

28

n28
•••j

m
n8

nn8

52I @m,m2 . . . mn ;m18m28•••mn8#

3
1

n!
en

18n
28•••n

n8
j

m
18

n18 j
m

28

n28
•••j

m
n8

nn8

52en
18n

28•••n
n8
j

m

n18j
m2

n28
•••j

mn

nn8 . ~B1!

Inserting this into the definition ofMm
n gives

Mm
n 52

1

DW 2

1

~n21!!
enn2•••nn

jm2

n2
•••jmn

nn

3en
18n

28•••n
n8
j

m
18

n18 j
m

28

n28
•••j

m
n8

nn8

52
1

DW 2

1

~n21!!
enn2•••nn

j
m

n18en
18n

28•••n
n8

3Nn2n
28
Nn3n

38
•••Nnnn

n8
. ~B2!

This expression is particularly useful if we consider t
quantity

jm
n8Mm

n 52
1

DW 2

1

~n21!!

3en,n2•••nn
en

18n
28•••n

n8
Nn8n

18
Nn2n

28
•••Nnnn

n8

52
1

DW 2

1

~n21!!
en,n2•••nn

en8,n2•••nn
detN52dn,n8 .

~B3!

APPENDIX C: ORTHOGONAL COORDINATE SYSTEM

We will construct an orthonormal coordinate system w
the basis vectors

ĵa
~s!5 (

n51

n

Asnja
n . ~C1!

These basis vectors are orthogonal toDW since ja
nDa50.

Since we require

ĵa
~s!ĵa

~s8!5dss8 , ~C2!

we have immediately, on inserting Eq.~C1! into Eq. ~C2!,
that dss85AsnAs8n8Nnn8 . If we take the determinant we ob
tain 15detA detN detÃ or, using Eq.~A3!,
detÃ detA5
1

detN
5

1

DW 2
. ~C3!

We can obtain a realization of the matrixAsn by constructing
the ĵa

(s) directly using the basis set

xa
~s!5 (

n51

n

e2p isn/nja
n ~C4!

which are not orthonormal. However, they can be co
structed to be orthonormal using the Gram-Schmidt ortho
nalization process. Thus eachĵa

(s) is a linear combination of
thexa

(s) which is proportional to a linear combination ofja
n .

Thus one can extract an explicit expression for the matrixA.
This explicit expression is not needed here.

APPENDIX D: INVERSE OF MATRIX Q

We need the inverse of the matrix

Qnn85 ĵa
~n!ĵb

~n8!M̄ab . ~D1!

If we use the expression given by Eq.~C1! for the basis
vectors, we obtain

Qnn85Ann̄ja
n̄ An8n̄8jb

n̄8Ma
n9Mb

n9 . ~D2!

We then use the identity Eq.~B3! twice to obtain

Qnn85Ann̄An8n̄8dn9,n̄dn9,n̄85Ann̄An8n̄ . ~D3!

This immediately tells us that

detQ5detA detÃ5
1

DW 2
. ~D4!

We still need to construct the inverse ofQ. It is easy to see
that this is given by the productQ215Ã21A21. However,
we only need the elements

Rab5 ĵa
~n!~Q21!nn8ĵb

~n8!

5Ansja
s ~Ã21!nn̄~A21!n̄n8An8s8jb

s8

5ja
s dn̄,sdn̄,s8jb

s85ja
s jb

s . ~D5!

APPENDIX E: EIGENVALUE PROBLEM

We need to find the six eigenvalues for the mat
Q defined by Eq.~87!. The analysis can be carried out b
looking at the action ofQ when acting on the six basis vec
tors: c15V̂mẑn , c25V̂mĉn , c35b̂mẑn , c45b̂mĉn , c5

5 k̂mzn , c65 k̂mĉn , where we have introducedĉn

5enn8ẑn8 , and b̂5 k̂3V̂. The action ofQ acting on these
states is given by

Qc15~11z21Ṽ2!c11 ikc4 , ~E1!

Qc25~11Ṽ2!c22 ikc3 , ~E2!

Qc35~11z2!c32 ikc21 ikW•V̂c6 , ~E3!
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Qc45c41 ikc12 ikW•V̂c5 , ~E4!

Qc55~11z2!c51Ṽ2k̂•V̂c1 , ~E5!

Qc65c61Ṽ2k̂•V̂c2 . ~E6!

We see that these equations decouple into two cubic sys
(c1 ,c4 ,c5) and (c2 ,c3 ,c6). We then only need the prod
uctsl1l2l3 andl4 ,l5l6 . It is well known ~see Ref.@35#!
that if one has a cubic characteristic equation
l

-

. E

. E

B

ys
ms

l31a2l21a1l1a050, ~E7!

then the product of the three roots is given byl1l2l3
52a0 . In the present case we easily find for the two se

a0
~1!52~11z2!~11z2Ṽ21k2!2~kW•ṼW !2 ~E8!

and

a0
~2!52~11z2!~11Ṽ2!1s21k22~kW•ṼW !2. ~E9!
n
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